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Viscoelastic Analysis of Multiphase Composites
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Acomputationallyef� cient formulationof the generalized methodof cells is extended todealwith linearviscoelas-
tic behavior. The resulting viscoelastic capability is utilized to calculate the viscoelastic responses of � ber-reinforced
unidirectional composites with polymeric matrices. A multi-axial hereditary viscoelastic model is used as the theo-
retical basisof the formulation.The creep compliances of composites with different � ber shapesand microstructure
architectures are analyzed and compared. To estimate accurately the in� uence of � ber shape, high-resolution cell
models (with up to 10,000 subcells) of the composites are used in the numerical experiments. Results show that
differences in creep response due to differences in � ber shape are not dramatic but that signi� cant differences exist
for the cases with different � ber arrangements.

I. Introduction

D EMAND for light, strong, and durable materials such as com-
posites is likely to increase in the near future as the aerospace

industry strives for developing a new generation of air and space
vehicles. On the other hand, powerful computationaland analytical
techniques allow for the modeling of complex materials with a de-
gree of detail not possible before. Furthermore, this computational
power makes the creationof a complete analysis and designcapabil-
ity for aerospace vehicles a distinct possibility in the 21st century.
Detailed micromechanical analysis of multiphase composites are
likely to be an important part of this general analysis and design
capability. As a matter of fact, the numerical capability developed
in connection with the present study has been implemented in the
commercial aircraft design and analysis code Hypersizer® (Collier
Research and Development Co.). This micromechanical analysis
capability incorporatesa viscoelasticmodel into the widely utilized
generalized method of cells (GMC).1 The GMC has been utilized
successfully during the past 10 years to model composites under a
variety of thermomechanical conditions.2 The precursor of GMC,
called simply method of cells, utilized a very simple discretiza-
tion scheme (with just four subcells).3 This method proved useful
in modeling simple (mainly two-phase) unidirectionalcomposites.
The method was subsequently generalized to allow the modeling
of composites with an arbitrary number of subcells. In its origi-
nal version, however, the GMC remained computationally limited
to about 500 subcells (for inelastic analysis). In its present form,
GMC allows calculationswith more than 10,000 subcells.This was
made possibleby two independentdevelopments.The � rst develop-
ment involveda reformulationof theGMC equationsthat effectively
reduces the number of independent unknowns, thereby greatly re-
ducing the computational and storage requirements of the method.
This work was done by Pindera and Bednarcyk.4 This reformu-
lated version of GMC is currently available in the NASA John H.
Glenn Research Center computer code MAC.5 The second devel-
opment takes advantage of the sparsity of the matrices in GMC to
reduce the computational and storage requirementsof the method.
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This results in a computationally ef� cient sparse implementation
of GMC. Sparse formulations of GMC have been described and
utilized in Refs. 6 and 7, where they have been applied to elastic-
ity and plasticity problems, respectively.The present study extends
the applicability of this computationally ef� cient sparse formula-
tion of GMC to viscoelastic problems. Viscoelastic models have
been used in conjunction with GMC in Ref. 8 and most recently in
Ref. 9. In Ref. 8, the original method of cells (with four subcells) in
conjunction with the correspondence principle and Laplace trans-
forms was used to model polymeric matrix composites. In Ref. 9, a
� nite-deformationviscoelasticmodel is incorporatedinto the three-
dimensional version of GMC and used to study the behavior of
short-� ber composites. In the present study, a simpler multi-axial
viscoelastic hereditary model developed in Ref. 10 is used as the
theoretical framework. The resulting GMC formulation is suitable
for modeling the viscoelastic responseof unidirectionalcomposites
with a high degree of detail in a computationally ef� cient manner.
A simple integration scheme based on the analytical solution of the
governingdifferentialequationof the hereditarymodel is also devel-
oped and presented.The hereditarymodel formulation is illustrated
in the context of a standard three-element solid model (Fig. 1a).

II. GMC
The GMC1;3 is a micromechanics model that has proven to be

effective in modeling the elastic and inelastic behavior of � ber-
reinforced unidirectionalcomposites.2 The method starts by divid-
ing the cross section of the composite into unit cells that correspond
to representative volume elements (RVEs). The unit cells or RVEs
are in turn dividedinto subdomainscalled subcells.Figure 2 shows a
unit cell with the correspondingsubcells and the associatednomen-
clature.The reinforcing� bers are assumed to extend in the x1 direc-
tion. When started with the material properties of the constituents
and the correspondingmaterial constitutivemodels,GMC uses trac-
tion and displacement continuity conditions, together with a stress
averaging procedure, to obtain the effective (or average) properties
and the effective behavior of the composite. GMC is, therefore, a
volume averaging method.

Models of unidirectionalcomposites using GMC satisfy traction
and displacementcontinuity in an average sense.1 The explicit form
of the tractionand displacement continuity conditions can be found
in Ref. 1, 6, or 7. The displacement continuity conditions can be
written compactly in matrix form as

AG "N D J N" (1)
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Fig. 1a Standard linear three-element solid
model.

Fig. 1b Multi-element model with Maxwell elements in parallel.

Fig. 2 Repeating unit cell with subcells and nomenclature.

where "N ´ f".1;1/; ".1;2/; : : : ; ".N¯ ;N° /gT contains N¯ N° vectors of
subcell strains ".¯° / and N" ´ fN"11; N"22; N"33; 2N"23; 2N"13; 2N"12gT con-
tains the effective strains. The matrices AG and J contain infor-
mation about subcell and cell geometry. Their entries are (h¯ and
l° ) h¯ l° products, (H and L ) HL products, and 1s and 0s (Fig. 2).

On the other hand, for a wide variety of material behavior, the
constitutive relationships can be written as

¾ D C
¡
" ¡ "¤ ¡ "T

¢
(2)

where C is the stiffness matrix of the material, "T is the thermal
strain, and "¤ is an inelastic strain, for example, plastic or viscoplas-
tic. It is shown in the next section that this constitutive relationship
is also valid for many spring–dashpot viscoelasticmodels provided
"¤ is taken as a modi� ed viscous strain O"´. For all of these models,
GMCs traction continuity conditions(Ref. 1, 6, or 7) can be written
as

AM ."N ¡ O"N ´ ¡ "N T / D 0 (3)

where O"N´ and "T are the (modi� ed) viscous and thermal strains of
all subcells. Equations (1) and (3) can be written compactly as

A"N D K N" C AI O"N´ C AI "N T (4)

where

A ´
µ

AG

AM

¶
(5)

AI ´
µ

0

AM

¶
(6)

K ´
µ

J

0

¶
(7)

Solving for the total strain in Eq. (4), one gets

"N D A¡1K N" C A¡1AI O"N´ C A¡1AI "N T (8)

or

"N D As N" C AI
s O"N ´ C AI

s "N T (9)

where

As ´ A¡1K (10)

AI
s ´ A¡1AI (11)

The subcell stresses can now be computed as

¾.¯° / D C.¯° /
£
A.¯° /

s N" C AI .¯° /
s O"N´ C AI .¯° /

s "N T ¡ O".¯° /

´ ¡ "
.¯° /

T

¤

(12)

where C.¯° / is the stiffness matrix corresponding to the material in
subcell .¯° /, and A.¯° /

s and AI .¯° /
s are submatrices of As and AI

s
corresponding to subcell .¯° /.

Applying now the de� nition of average stress to Eq. (12), one
obtains

N¾ D 1
HL

X

¯

X

°

h¯ h° C.¯° /A.¯° /
s N"

C 1
HL

X

¯

X

°

¡
h¯ h° C.¯° /AI .¯° /

s O"N´ ¡ O".¯° /

´

¢

C 1
HL

X

¯

X

°

¡
h¯ h° C.¯° /AI .¯° /

s "N T ¡ "
.¯° /

T

¢
(13)

On the other hand, the effective average stress can be written as

N¾ D NC. N" ¡ NO"´ ¡ N"T / (14)

If the effective stiffness matrix is de� ned as

NC D
1

HL

X

¯

X

°

h¯ h° C.¯° /A.¯° /
s (15)

Equation (13) can be written as

N¾ D NC

"
N" C C¡1 1

HL

X

¯

X

°

¡
h¯ h° C.¯° /AI .¯° /

s O"N ´ ¡ O".¯° /

´

¢

C C¡1 1
HL

X

¯

X

°

¡
h¯ h° C.¯° /AI .¯° /

s "N T ¡ ".¯° /

T

¢
#

(16)

whichon comparisonwith Eq. (14) suggeststhe followingde� nition
for the effective viscous and thermal strains:

NO"´ D ¡ NC¡1 1
HL

X

¯

X

°

¡
h¯ h° C.¯° /AI .¯° /

s O"N´ ¡ ".¯° /
´

¢
(17)

N"T D ¡ NC¡1 1
HL

X

¯

X

°

¡
h¯ h° C.¯° /AI .¯° /

s "N T ¡ "
.¯° /

T

¢
(18)
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III. Viscoelastic Hereditary Model
The basic hereditaryviscoelastic relationshipsfor a uniaxial case

can be derived directly by applying equilibrium and compatibility
to the three-element model shown in Fig. 1a. This model consists
of a spring and a Maxwell element in parallel. Cs and Cm are the
elastic moduli of the springs, and ´ is the damping coef� cient of the
dashpot in the Maxwell element. To obtain a multi-axial version of
the hereditarymodel for the nonisothermal case, it is advantageous
to use Gibbs free energy potential (see Ref. 10). The following
discussionfollowscloselythatofRef. 10.Whenamulti-axialsystem
analogous to that shown in Fig. 1a is referred to, Gibbs free energy
potential takes the form

8 D ¡ 1
2 ¾T

s C¡1
s ¾s ¡ 1

2 ¾T
mC¡1

m ¾m ¡ 1
2 ¾T

m "´ ¡ ® tr.¾/.T ¡ T0/

(19)

where Cs is the elastic stiffness matrix of a homogeneous isotropic
material with modulus of elasticity Es and Poisson’s ratio º,
Cm is the elastic stiffness matrix of a homogeneous isotropic
material with modulus of elasticity Em and Poisson’s ratio º,
¾s ´ f¾ s

11; ¾ s
22; ¾ s

33; ¾ s
23; ¾ s

13; ¾ s
12gT are the stresses in the isolated

spring element, ¾m ´ f¾ m
11; ¾m

22; ¾ m
33; ¾ m

23; ¾ m
13; ¾ m

12gT are the stresses
in theMaxwell element,"´ ´ f"´

11; "
´

22; "
´

33; 2"
´

23; 2"
´

13; 2"
´

12gT are the
strains in the viscous damper, ® is the coef� cient of thermal ex-
pansion of the material, and T0 and T are the initial and current
temperatures, respectively.

The strain rates corresponding to the spring and the Maxwell
element can be obtained as

P"s D d

dt

³
¡ @8

@¾s

´
(20)

P"m D d

dt

³
¡ @8

@¾m

´
(21)

that is,

P"s D C¡1
s P¾s C

µ
@C¡1

s

@T
¾s C ® C

@®

@T
.T ¡ T0/

¶
PT (22)

P"m D C¡1
m P¾m C

µ
@C¡1

m

@T
¾m C ® C

@®

@T
.T ¡ T0/

¶
PT C P"´ (23)

where® ´ f®; ®; ®; 0; 0; 0gT . Equations(22)and (23)canbewritten
as

P"s D C¡1
s P¾s C µs

PT (24)

P"m D C¡1
m P¾m C µm

PT C P"´ (25)

where

µs ´
@C¡1

s

@T
¾s C ®lin (26)

µm ´
@C¡1

m

@T
¾m C ®lin (27)

with

®lin ´ ® C
@®

@T
.T ¡ T0/ PT (28)

In analogy with the model of Fig. 1a, the stress rates satisfy

P¾ D P¾m C P¾s (29)

Also, using the constitutive relationships,we obtain

P¾s D Cs. P"s ¡ µs
PT / (30)

P¾m D Cm. P"m ¡ P"´ ¡ µm
PT / (31)

On the other hand, from compatibility,

P" ´ P"s D P"m (32)

When Eqs. (29–32) are used, P¾ can be written as

P¾ D CE f P" ¡ .Em =E/ P"´ ¡ [.Es=E/µs C .Em =E/µm ] PT g (33)

where

CE ´ Cs C Cm (34)

It is also assumed in Eq. (33) that

Cs ´ EsN; Cm ´ EmN; CE ´ EN (35)

where E ´ Es C Em and N is a matrix that contains a common
Poisson’s ratio º, 1s, and 0s. Assumption (35) relies on that the
same value of Poisson’s ratio can be be assumed for all multi-axial
elements (springs and dashpots) in the viscoelastic model. It has
been shown in Ref. 10 that this assumption produces responses
that compare well with experimental results. Equation (33) can be
written as

P¾ D CE .P" ¡ PO"´ ¡ P"T / (36)

where

PO"´ ´ .Em=E /P"´ (37)

P"T ´ O® PT (38)

with

O® ´ .1=E/.Esµs C Em µm / (39)

As pointedout in Sec. II, Eq. (36) allows the incorporationof the
present viscoelastic model into the framework of a micromechani-
cal method (such as GMC) much in the same way as inelastic, for
example, plastic or viscoplastic, behavior is incorporated (for ex-
ample, see Ref. 2). It is also possible to derive a similar expression
for a multi-element model with an arbitrary number of Maxwell
elements in parallel (Fig. 1b and the Appendix). Note, however,
that these models ignore the nonlinear dependencies of Poisson’s
ratios pointed out in Refs. 11 and 12. Because the purpose of the
present study is to demonstrate the applicability of the viscoelas-
tic theory of Ref. 10 in conjunction with the GMC, the numerical
results presented are limited to the three-element model shown in
Fig. 1a.

When the present three-element model is used, a given homo-
geneous viscoelastic material will be characterizedby a set of four
materialconstants,Em , Es ,´, andº, atdiscretetemperaturevalues.10

It is useful then to � nd explicitexpressionsfor the partialderivatives
appearing in Eqs. (26) and (27) in terms of these material constants.
This is done in the next paragraphs.

For a homogeneousisotropicmaterial,C¡1
s correspondsto a com-

pliance matrix given by

C¡1
s D E¡1

s L (40)

where

L ´

2

66666664

1 ¡º ¡º 0 0 0

¡º 1 ¡º 0 0 0

¡º ¡º 1 0 0 0

0 0 0 2 C 2º 0 0

0 0 0 0 2 C 2º 0

0 0 0 0 0 2 C 2º

3

77777775

(41)

The partial derivative in Eq. (26) is then

@C¡1
s

@T
D ¡E¡2

s

@Es

@T
L C E¡1

s

@º

@T
L0 (42)
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where

L0 ´

2

66666664

0 ¡1 ¡1 0 0 0

¡1 0 ¡1 0 0 0

¡1 ¡1 0 0 0 0

0 0 0 2 0 0

0 0 0 0 2 0

0 0 0 0 0 2

3

77777775

(43)

The parameter µs in Eq. (26) can now be expressed as

µs D
³

¡E ¡2
s

@ Es

@T
L C E¡1

s

@º

@T
L0

´
¾s C ®lin (44)

The analogous expression for µm [Eq. (27)] is then

µm D
³

¡E¡2
m

@ Em

@T
L C E¡1

m

@º

@T
L0

´
¾m C ®lin (45)

To use Eqs. (44) and (45) in practice, it is necessary to express
¾s and ¾m in terms of the stress and strain rates P¾ and P" and the
thermal strain rate P"T . This can be accomplished as follows.

The stresses in the viscous damper satisfy

¾m D C´ P"´ (46)

On the other hand, the modi� ed viscous strain rates can be obtained
from Eq. (36) as

PO"´ D ¡C¡1
E P¾ C P" ¡ P"T (47)

When Eqs. (29) and (37) are used, ¾m and ¾s can be expressed as

¾m D .E=Em/C´
PO"´ (48)

¾s D ¾ ¡ ¾m (49)

For consistency, it is also assumed that [see Eq. (35)]

C´ ´ ´N (50)

IV. Integration of the Constitutive Relationships
The constitutiverelationship(36)canbe interpretedasanordinary

differential equation that can be integrated to obtain either ¾ or ".
The procedurewill be illustratedfor the case of integrationto obtain
¾. This of course corresponds to a strain-driven problem in which
the strain rate P" and the rate of change of the temperature PT are
assumed known. The simplest way to integrate Eq. (36) is to use a
forward Euler scheme. In this case, once the stress is known at time
t , the correspondingstress at time t C 1t can be found as

¾.t C 1t/ ¼ ¾.t/ C CE .P" ¡ PO"´ ¡ P"T /1t (51)

A slightly more accurate way of integrating Eq. (36) numerically
consists of � nding an analytical solution � rst and then carrying out
the numerical approximation. To this end, one uses Eqs. (48) and
(37) to rewrite Eq. (36) as

P¾ D CE P" ¡ CmC¡1
´ ¾m ¡ CE O® PT (52)

When use is made of relations (29) and (37), one can write

P¾ D CE P" ¡ .Em =´/.¾ ¡ ¾s/ ¡ CE O® PT (53)

which can be reordered to yield

P¾ C .Em =´/¾ D CE P" C .Em =´/¾s ¡ CE O® PT (54)

whose solution is

¾.t/ D exp

³
¡

Em

´
t

´

£

" Z t

0

exp

³
Em

´
¿

´³
CE P" C

Em

´
¾s ¡ CE O® PT

´
d¿

#
(55)

After some algebraicmanipulations,an approximate incremental
version of Eq. (55) is found as

¾.t C 1t/ ¼ exp[¡.Em =´/1t ]¾.t/ C exp[¡.Em=´/.1t=2/]

£ [CE .P" ¡ O® PT / C .Em =´/¾s]t C 1t=21t (56)

where use has been made of the mean value theorem to estimate the
second term.

For the isothermal case, Eq. (55) becomes

P¾ C .Em =´/¾ D CE P" C .Em=´/Cs" (57)

Equation (57) can be solved for ¾ and " to obtain

¾.t/ D exp

³
¡

Em

´
t

´

£

" Z t

0

exp

³
Em

´
¿

´³
CE P" C

Em

´
Cs "

´
d¿

#
(58)

".t/ D exp

³
¡

Em Es

E´
t

´

£

" Z t

0

exp

³
Em Es

E´
¿

´³
C¡1

E P¾ C
Em

´
C¡1

E ¾

´
d¿

#
(59)

respectively. From Eqs. (58) and (59), well-known relaxation and
creep solutions for the present model can be readily obtained as13

G.t/ D Cs C Cm exp[¡.Em =´/t ] (60)

J.t/ D C¡1
E exp[¡.Em Es =´E/t ] C C¡1

s f1 ¡ exp[¡.Em Es=´E/t ]g
(61)

V. Incremental Solution Procedure
The objective of the present analysis is to � nd the viscoelastic re-

sponse(represented,for example,by theeffectivecreepcompliance)
of the composite question. The numerical integration procedure is,
therefore, carried out within the context of the GMC equations. In
the common case of elastic � bers embeddedin a viscoelasticmatrix,
the equations of Sec. IV apply to the viscoelastic phase only. The
elastic phase is handled in the standard manner by means of the
appropriateconstitutiveequation [Eq. (2) with "¤ equal to zero]. As
mentionedin Sec. IV, the integrationof theconstitutiveequationsfor
the viscoelasticphase can be accomplishedeither by using a simple
forward Euler scheme or the slightly more accurate stepping ap-
proach based on the analytical solution [Eq. (54)]. Both approaches
were tested numerically during the present study, but only the re-
sults obtained with the latter are presented. The numerical solution
procedure is arranged so that it is strain and temperature driven,
that is, the total effective strain rate PN" and the rate of change of the
temperature PT are assumed known at each time step. For the creep
compliance results presented in Sec. VII, an arbitrary stress step
is � rst applied to the composite, and the corresponding strains are
then calculated using the undotted version of Eq. (47). The process
can then be applied as if the problem were strain driven. The details
of the procedure are best appreciated if arranged in the form of an
algorithm as shown in the following section. Only the steps corre-
sponding to the viscoelasticphaseare indicated.The elasticphase is
treated in the standard manner. The index k indicates the time step.

The algorithm is as follows:
1) Obtain the matrices As and AI

s [Eqs. (10) and (11)], and com-
pute the effective stiffness matrix for the composite using Eq. (15).

2) Initializeall relevantvariables, that is, set k D 0, t D 0, T D T0,
"Nk D 0, ¾Nk D 0, "N T k D 0, "s N T k D 0, PO"N ´k D 0, and P"N T k D 0.
Here, PN"k and PTk are assumed known.

3) Find the strain rates in the subcells as [Eq. (9)]

P"N k D As
PN"k C AI

s
PO"N ´k C AI

s P"N T k

4) Find the individual strains in the subcells as

"Nk C 1 D "N k C P"Nk 1t



OROZCO AND PINDERA 1623

5) For all subcells .¯° / use the following steps:
a) Find ¾

.¯° /

sk , ¾
.¯° /

mk [Eqs. (30) and (31)], and ¾
.¯° /

sk C 1=2 as

¾
.¯° /

sk D C.¯° /
s

¡
"

.¯° /

k ¡ "
.¯° /

sT k

¢
; ¾

.¯° /

mk D ¾
.¯° /

k ¡ ¾
.¯° /

sk

¾.¯° /

sk C 1
2

D C.¯° /
s

±
".¯° /

k C 1
2

¡ ".¯° /

sT k C 1
2

²

b) Find the viscous strain rate [Eq. (48)]:

PO"
.¯° /

´k D
¡
E .¯° /

m

¯
E .¯° /

¢¡
C.¯° /

´k

¢¡1
¾

.¯° /

mk

c) Find a modi� ed stress rate as [Eq. (56)]

OP¾
.¯° /

k C 1
2

D C.¯° /

E

±
P".¯° /

k C 1
2

¡ P".¯° /

T k C 1
2

²
C

¡
E .¯° /

m

¯
´.¯° /

¢
¾

.¯° /

sk C 1
2

d) Find the new stress as [Eq. (56)]

¾
.¯° /

k C 1 D exp
©
¡

£
E .¯° /

m

¯
´.¯° /

¤
1t

ª
¾

.¯° /

k

C exp
©
¡

£
E .¯° /

m

¯
´.¯° /

¤
.1t=2/

ª OP¾
.¯° /

k C 1
2
1t

e) Calculate µ.¯° /
s and µ.¯° /

m using Eqs. (26) and (27).
f) Calculate O®.¯° / from Eq. (39) and the new thermal strain

rate as P".¯° /

T k C 1 D O®.¯° / PTk .
g) Calculate the new thermal strain:

"
.¯° /

T k C 1 D "
.¯° /

T k C P".¯° /

T k C 11t

h) Update the thermal strain in the isolated spring element:

"
.¯° /

sT k D "
.¯° /

sT k C µ.¯° /
s

PTk 1t

i) Calculate the new viscous strain [Eq. (47)]:

O".¯° /

´k D ¡
¡
C.¯° /

E

¢¡1
¾

.¯° /

k C 1 C "
.¯° /

k C 1 ¡ "
.¯° /

T k

6) Set "Nk D "N k C 1, ¾Nk D ¾N k C 1 , O"N´k D O"N ´k C 1, and O"N T k D
O"N T k C 1.

7) Find the effective viscous and thermal strains NO"´ and N"T by
means of Eqs. (17) and (18) and integrate PN"k to get N"k .

8) Find the effective stress N¾ from Eq. (14).
9) If k < maximum number of load steps, then set t D t C 1t ,

k D k C 1, and go to step 3, otherwise stop.
The notationk C 1

2 has beenused to representquantitiesevaluated
at time t C 1t=2 [Eq. (56)]. These quantities are approximated as
the average at time step k and k C 1 .

In case the plain forward Euler procedure is preferred,steps c and
d should be replaced by the following steps:

c) Find the stress rate [Eqn. (18)]: P¾.¯° /

k D C.¯° /

E .P".¯° /

k ¡
PO"

.¯° /

´k ¡ P".¯° /

T k /.
d) Integrate the stress rate: ¾.¯° /

k C 1 D ¾.¯° /

k C P¾.¯° /

k 1t .

VI. Computational Aspects
One of the dif� culties of using GMC for other than elastic prob-

lems is the size of the matrices involved in the calculations.There-
fore, it is important to store and factor the matrix A in Eqs. (10)
and (11) sparsely. The matrices As and AI

s must usually be stored
as fully populated matrices [Eqs. (10) and (11)]. For the problem
of � nding the effective elastic properties of a composite, only As

needs to be calculated. This matrix is a 6N¯ N° £ 6 matrix and can
usually be stored completely, while still permitting the solution of
problems with a large number of subcells.6 For inelastic problems,
however, storageof AI

s as a fully populatedmatrix is prohibitive.AI
s

is a 6N¯ N° £ 6N¯ N° matrix, and to store it completely for a prob-
lem with 2500 subcells would require 1.8 GB of memory (using
double precision). To perform analyses that require high-resolution
subcell models, it is necessary to reduce the storage requirements
imposed by AI

s . This has been accomplished in Ref. 4 by means of
a reformulation of the GMC equations. This reduces considerably
the computational and storage requirements of the method. Alter-
natively, for some nonlinearproblems, storageof AI

s can be avoided

altogether.This has been done in Ref. 7 by means of a tangent stiff-
ness matrix formulation for plasticity problems . In this study, we
present yet a third approach. It also avoids complete storage of AI

s .
This approach is described next.

Equation (9) is rewritten as

"N D As N" C A¡1
¡
AI O"N´

¢
C A¡1

¡
AI "N T

¢
(62)

If instead of Eq. (57), Eq. (67) is used to calculate the strains in
the subcells, it is not necessary to generate and store AI

s . Instead,
A is factored once, and then, at each load step, AI (which is also
stored sparsely) is multipliedby the current value of the viscousand
thermal strains O"N ´ and "N T . In this way, the entire process requires
only one factorization of A at the beginning of the procedure and
two triangularsolves at each load step. The procedureallows for the
solution of problems with a large number of subcells. A problem
with 10,000 subcells and 60 time steps similar to the ones shown
subsequently takes about 12 h of CPU time on an SGI Indigo2
workstation.

VII. Numerical Results
The hereditary viscoelastic model utilized in the present study

has been found useful in modeling the behavior of a titanium
alloy (TIMETAL 21S) at a wide range of temperatures.10;14 The
corresponding numerical approach developed here is used to an-
alyze graphite/epoxy unidirectional composites with various � ber
arrangements and � ber shapes. The three-element hereditary vis-
coelastic model can be calibrated to � t experimental results of real
viscoelastic polymeric materials. This has been done, for instance,
for the 934 epoxy resin of Ref. 8. This epoxy resin, however, ex-
hibits relativelylittle viscoelasticity.To better examine the in� uence
of � ber shape and � ber arrangement on the viscoelastic response of
composite materials, a hypotheticalviscoelasticmaterial (epoxy-h)
was used as the matrix material in the numerical experimentsof the
present study. T300 graphite � bers with real properties3 were used
as reinforcement material.

Two sets of numerical experiments were performed. In the � rst
set, the in� uenceof � ber arrangementand � ber shapeon the isother-
mal response of composites was studied. Four different � ber ar-
rangements and three different � ber shapes were considered.These
are shown in Figs. 3 and 4. In the second set, the response of the
composite to thermal load at different heating rates was examined.

a)

b)

Fig. 3 Microstructures with different � ber shapes, 10,000 subcells;
� ber volume fractions: a) 0.4 and b) 0.28.
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Table 1 Mechanical properties of materials used
in numerical experiments

T300 graphite T300 graphite Epoxy-h Epoxy-h
Propertya � bers at 22±C � bers at 121±C at 22±C at 121±C

EA, MPa 202,820 214,330 —— ——
ET , MPa 25,300 14,820 —— ——
G A, MPa 44,112 68,180 —— ——
º 0.443 0.450 0.300 0.306
®A, ±C¡1 1:33 £ 10¡6 ¡1:33 £ 10¡6 3:0 £ 10¡4 3:0 £ 10¡4

®T , ±C¡1 7:04 £ 10¡6 7:04 £ 10¡6 3:0 £ 10¡4 3:0 £ 10¡4

Es , MPa —— —— 4,000 2,735
Em , MPa —— —— 3,000 4,895
´, MPa ¢ s —— —— 2.5 £ 106 2.27£ 106

aSubscript A indicates axial and subscript T indicates transverse.

a) c)

b) d)

Fig. 4 Fiber volume fraction 0.4, 2500 subcells (2150 for the hexag-
onal packing): a) square-edge packing of circular � bers, b) randomly
distributed � ber material, c) hexagonal (triangular) packing of circular
� bers, and d) square-diagonal packing of circular � bers.

The properties of the materials used are listed in Table 1. The creep
compliance function [Eq. (61)] corresponding to the hypothetical
epoxy is shown in Fig. 5. The parameters of the three-element stan-
dard solid model used to produce Fig. 5 are also listed in Table 1.

A. In� uence of Fiber Shape and Fiber Arrangement:
Isothermal Case

Figure 6 shows the responses (transverse creep compliances)
corresponding to the microstructures shown in Fig. 3. These mi-
crostructuresdiffer only in � ber shape. To capture the effect of � ber
shape better, high-resolutionmodels (10,000 subcells) were used to
generate these responses. Note that there is a small but noticeable
difference in the responses of the elliptic and circular � bers when
the loadingdirection is the x2 direction (about 3.7% at the end of the
loadingcycle). When the directionof loading is the x3 direction, the
elliptical � ber response is 16% lower than that of the circular � ber.
The reason for this is that the elliptical � ber has its larger semi-axis
directed in the x3 direction. Very little difference in the response is
exhibited by the circular and square � ber microstructures.This is in
contrast to what has been observed in Refs. 7, 15, and 16 for plastic
behavior. The reason is that � ber shape and � ber arrangement have
a signi� cant effect on the magnitude of the hydrostatic component
of the stress. In plasticity models, this hydrostatic component plays
an important role because it inhibits the progression of the plas-

Fig. 5 Creep compliance of hypothetical epoxy (epoxy-h); thermome-
chanical properties shown in Table 1.

Fig. 6 Transverse creep compliances ("22/¾22) corresponding to com-
posite microstructures with different � ber shapes (Fig. 3).

tic zone in the matrix. In contrast, the present viscoelastic model
makes no attempt to distinguishbetween viscoelasticeffects due to
hydrostatic and deviatoric components of the stress.

The creep compliance functions corresponding to the different
microstructure architecturesof Fig. 4 are shown in Fig. 7. The � rst
observationis that allmicrostructuresaremore compliantin longitu-
dinal shear than in transverse tension.The responses corresponding
to the hexagonaland randommicrostructuresalmostcoincidefor the
longitudinal shear compliance and are very close to each other for
the transverse compliance.This is because a hexagonalmicrostruc-
ture exhibits an almost perfect transversely isotropic behavior just
as a random microstructure does.6 The responses corresponding to
the square-edgeand the single circular � ber should theoreticallyco-
incide because they are indeed the same microstructure.The small
differences seen in Fig. 7 for these two cases are due to the mod-
eling of the microstructures. (Because arrays of 50 £ 50 subcells
were used, the circular � ber shape is more accurately modeled for
the single � ber than for the square-edgearray.) There are signi� cant
differencesbetweenthe responsescorrespondingto the square-edge,
the hexagonal and random, and the square-diagonal architectures.
The differences in response for the circular � ber and the random
microstructure are of the order of 14% at the end of the loading
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Table 2 Initial mechanical properties corresponding to microstructures shown in Figs. 3 and 4

Property, MPa

Microstructure E11 E22 E33 º23 º13 º12 G23 G13 G12

Elliptical, v f D 0:28 61,398 9,733 10,933 0.357 0.362 0.331 3,333 5,860 3,715
Circular, v f D 0:28 61,853 9,983 10,016 0.387 0.344 0.344 3,340 4,102 4,061
Circular, v f D 0:40 85,359 11,462 11,602 0.381 0.364 0.362 3,725 5,280 5,068
Square edge, v f D 0:40 82,226 11,201 11,446 0.380 0.363 0.358 3,668 5,198 4,836
Hexagonal, v f D 0:40 85,707 10,737 11,214 0.394 0.366 0.355 3,731 4,975 4,397
Random, v f D 0:40 85,330 10,584 10,601 0.412 0.358 0.357 3,725 4,372 4,351
Square diagonal, v f D 0:40 75,562 10,207 10,289 0.406 0.353 0.351 3,571 4,206 4,117

Transverse ("22/¾22) creep compliances

Longitudinal shear (2"12 /¾12 ) creep compliances

Fig. 7 Creep compliancescorresponding to compositemicrostructures
with different architectures (Fig. 4).

cycle for the transverse loadingand of the order of 18% for longitu-
dinal shear. The square-diagonalmicrostructure turns out to be the
most compliant for both longitudinal shear and transverse normal
loading. The square-diagonalmicrostructure is 19% more compli-
ant (at the end of the loading cycle) than the single circular � ber
for the transverse loading and 24% more compliant than the sin-
gle circular � ber for longitudinal shear. This can be explained by
that the square-diagonalmicrostructure is actually the square-edge
microstructure rotated 45 deg. Note that part of the differences in
response found in all of these cases can be explained by the differ-

Fig. 8 Viscoelastic response of graphite–epoxy composite for thermal
load at different heating rates; square-edge packing of T300 graphite
circular � bers (Fig. 4), vf = 0.4.

ences in (initial) effectivepropertiesof the differentmicrostructures
(Table 2). A portion of the difference in responses, however, is due
to viscoelastic effects. The in� uence of the � ber geometry on the
creep times of the different composite microstructures is also indi-
cated by the differences in the initial slopes of the creep compliance
responses shown in Figs. 6 and 7.

B. Nonisothermal Case
The response of the composite to thermal load was examined for

a series of different heating rates and for temperature-dependent
properties. The properties are presented in Table 1. The properties
for the T300 graphite � bers are actual experimental values taken
from Refs. 3 and 8. The properties for the epoxy-h are hypotheti-
cal but chosen so that its behavior with temperature is analogous to
that of the epoxy resin reported in Ref. 8. Six rates were utilized,
namely, PT D 0:005, 0:01, 0:02, 0:04, 0:08, and 0:16±C s¡1 . Results
were obtained for the strain in the x1 and x2 directions. Very few
viscoelastic effects were found for the strain in the x2 direction.
Therefore, only the results for the longitudinal strain are presented.
Circular � bers corresponding to square-edge and hexagonal pack-
ing (Fig. 4) were utilized. Very little difference in the response was
found for different packing arrangements and/or � ber shapes. As a
consequence, results are presented only for the square-edge pack-
ing. These are shown in Fig. 8. Results show a difference of 160%
in the � nal strains between the slower ( PT D 0:005±C s¡1 ) and the
faster ( PT D 0:16±C s¡1) rate. This difference is of course a func-
tion of the viscoelastic properties of the matrix, as well as the mis-
match in the coef� cients of thermal expansion between � ber and
matrix.

C. Numerical Accuracy of the Results
All resultspresentedin thepresentstudywereobtainedusingdou-

bleprecisionon anSGI Indigo2workstation.There is very littleerror
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in the numerical integrationprocedureutilized.When, for instance,
Fig. 5 is referred to, the asymptotic value of the creep compliance
is about 250¡6 MPa¡1, which is exactly the inverse of 4000 MPa,
the Es value given in row � ve, column two of Table 2 for epoxy-h.

VIII. Summary
A computationallyef� cient viscoelasticformulationof GMC has

been presented and used to study the behavior of complex mi-
crostructureunidirectionalcompositeswith viscoelasticmatrices.A
multi-axial hereditary viscoelastic model developed in Ref. 10 was
used as the theoreticalframework of the formulation.The viscoelas-
tic creep responses of composites with different � ber shapes and
� ber arrangements were analyzed and compared. High-resolution
cell models (with up to 10,000 subcells) of the composites were
used for the � ber-shape comparison cases. It was found that dif-
ferences in viscoelastic response due to differences in � ber shape
are not signi� cant (about 3.7% for the case of elliptical vs circular
� bers). However, signi� cant differences are found for composites
with different � ber arrangements. These differences can be on the
order of 24%. Experimental research is necessary to verify some of
the results of the present study. On the other hand, the results seem
to con� rm what has been observed in similar numerical studies for
plastic and viscoplastic behavior of composites. It is believed that
the numerical capability developed is an ef� cient tool to predict the
viscoelastic behavior of complex microstructure multiphase com-
posites. Furthermore, the capability can be used within structural
analysis codes as a constitutive model subroutine, just as has been
done with the commercial code Hipersizer.

Appendix: Derivation of the Constitutive Equation
for a Parallel Multi-Element Maxwell Model

For the i th Maxwell element in Fig. 1b, we have

P¾i D Ci . P" ¡ P"i´ ¡ P"i T / (A1)

where P" is the total strain rate, P"i´ is the strain rate in the dashpot,
P"i T is the thermal strain rate, Ci the material stiffness matrix, and
P¾i is the stress rate. Because the Maxwell elements in Fig. 1b are
connected in parallel, the total stress rate is

P¾ D
X

i

Ci . P" ¡ P"i´ ¡ P"i T / (A2)

which can be written

P¾i D C

"
P" ¡ C¡1

X

i

.Ci P"i´/ ¡ C¡1
X

i

.Ci P"i T /

#
(A3)

where

C D
X

i

.Ci / (A4)

Equation (A3) can be written as

P¾ D C. P" ¡ PO"´ ¡ P"T / (A5)

provided that

PO"´ ´ C¡1
X

i

.Ci P"i´/ (A6)

P"T ´ C¡1
X

i

.Ci P"iT / (A7)

Equation (A5) is formally the same as Eq. (36), which is the basis
for the implementation of a viscoelastic model into GMC. On the
other hand, at least in theory, it is possible to model real viscoelas-
tic materials to any desired degree of accuracy using multi-element
Maxwell models in parallel.13 Therefore, it is possible to apply the
methodologydevelopedin the present paper to the analysis of com-
posites with realistic viscoelastic matrix materials.
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