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Viscoelastic Analysis of Multiphase Composites
Using the Generalized Method of Cells
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A computationally efficient formulation of the generalized method of cells is extended to deal with linear viscoelas-
tic behavior. The resulting viscoelastic capability is utilized to calculate the viscoelastic responses of fiber-reinforced
unidirectional composites with polymeric matrices. A multi-axial hereditary viscoelastic model is used as the theo-
retical basis of the formulation. The creep compliances of composites with different fiber shapes and microstructure
architectures are analyzed and compared. To estimate accurately the influence of fiber shape, high-resolution cell
models (with up to 10,000 subcells) of the composites are used in the numerical experiments. Results show that
differences in creep response due to differences in fiber shape are not dramatic but that significant differences exist

for the cases with different fiber arrangements.

I. Introduction

EMAND for light, strong, and durable materials such as com-

posites is likely to increase in the near future as the aerospace
industry strives for developing a new generation of air and space
vehicles. On the other hand, powerful computational and analytical
techniques allow for the modeling of complex materials with a de-
gree of detail not possible before. Furthermore, this computational
power makes the creationof a complete analysis and design capabil-
ity for aerospace vehicles a distinct possibility in the 21st century.
Detailed micromechanical analysis of multiphase composites are
likely to be an important part of this general analysis and design
capability. As a matter of fact, the numerical capability developed
in connection with the present study has been implemented in the
commercial aircraft design and analysis code Hypersizer® (Collier
Research and Development Co.). This micromechanical analysis
capability incorporatesa viscoelasticmodel into the widely utilized
generalized method of cells (GMC).! The GMC has been utilized
successfully during the past 10 years to model composites under a
variety of thermomechanical conditions? The precursor of GMC,
called simply method of cells, utilized a very simple discretiza-
tion scheme (with just four subcells).? This method proved useful
in modeling simple (mainly two-phase) unidirectional composites.
The method was subsequently generalized to allow the modeling
of composites with an arbitrary number of subcells. In its origi-
nal version, however, the GMC remained computationally limited
to about 500 subcells (for inelastic analysis). In its present form,
GMC allows calculations with more than 10,000 subcells. This was
made possible by two independentdevelopments. The first develop-
mentinvolvedareformulationof the GMC equationsthateffectively
reduces the number of independent unknowns, thereby greatly re-
ducing the computational and storage requirements of the method.
This work was done by Pindera and Bednarcyk? This reformu-
lated version of GMC is currently available in the NASA John H.
Glenn Research Center computer code MAC.3 The second devel-
opment takes advantage of the sparsity of the matrices in GMC to
reduce the computational and storage requirementsof the method.
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This results in a computationally efficient sparse implementation
of GMC. Sparse formulations of GMC have been described and
utilized in Refs. 6 and 7, where they have been applied to elastic-
ity and plasticity problems, respectively. The present study extends
the applicability of this computationally efficient sparse formula-
tion of GMC to viscoelastic problems. Viscoelastic models have
been used in conjunction with GMC in Ref. 8 and most recently in
Ref. 9. In Ref. 8, the original method of cells (with four subcells) in
conjunction with the correspondence principle and Laplace trans-
forms was used to model polymeric matrix composites. In Ref. 9, a
finite-deformationviscoelasticmodel is incorporatedinto the three-
dimensional version of GMC and used to study the behavior of
short-fiber composites. In the present study, a simpler multi-axial
viscoelastic hereditary model developed in Ref. 10 is used as the
theoretical framework. The resulting GMC formulation is suitable
for modeling the viscoelasticresponse of unidirectionalcomposites
with a high degree of detail in a computationally efficient manner.
A simple integration scheme based on the analytical solution of the
governingdifferentialequationof the hereditarymodel is also devel-
oped and presented. The hereditary model formulationis illustrated
in the context of a standard three-elementsolid model (Fig. 1a).

II. GMC

The GMC!*? is a micromechanics model that has proven to be
effective in modeling the elastic and inelastic behavior of fiber-
reinforced unidirectional composites > The method starts by divid-
ing the cross section of the composite into unit cells that correspond
to representative volume elements (RVEs). The unit cells or RVEs
are in turn dividedinto subdomainscalled subcells. Figure 2 shows a
unit cell with the correspondingsubcells and the associated nomen-
clature. The reinforcing fibers are assumed to extend in the x; direc-
tion. When started with the material properties of the constituents
and the correspondingmaterial constitutivemodels, GMC uses trac-
tion and displacement continuity conditions, together with a stress
averaging procedure, to obtain the effective (or average) properties
and the effective behavior of the composite. GMC is, therefore, a
volume averaging method.

Models of unidirectional composites using GMC satisfy traction
and displacementcontinuity in an average sense.' The explicitform
of the traction and displacement continuity conditions can be found
in Ref. 1, 6, or 7. The displacement continuity conditions can be
written compactly in matrix form as

o))

AGEN =Jé
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Fig. 1a Standard linear three-element solid Cs
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Fig.1b Multi-element model with Maxwell elements in parallel.
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Fig.2 Repeating unit cell with subcells and nomenclature.

where ey = {1, &2, ., e™e-MT contains Ny N, vectors of
subcell strains ) and & ={z,,, £x, £33, 2823, 2813, 2€1,}" con-
tains the effective strains. The matrices Ag and J contain infor-
mation about subcell and cell geometry. Their entries are (4 and
1) hgl, products,(H and L) HL products,and 1s and Os (Fig. 2).
On the other hand, for a wide variety of material behavior, the
constitutiverelationships can be written as

0'=C(€—€*—€T) ?2)

where C is the stiffness matrix of the material, €, is the thermal
strain, and €* is an inelastic strain, for example, plastic or viscoplas-
tic. It is shown in the next section that this constitutive relationship
is also valid for many spring-dashpot viscoelastic models provided
e* is taken as a modified viscous strain &,. For all of these models,
GMCs traction continuity conditions (Ref. 1, 6, or 7) can be written
as

Ayey — éNn —enr) =0 3)

where & ~yn and g7 are the (modified) viscous and thermal strains of
all subcells. Equations (1) and (3) can be written compactly as

AEN =Ke +AléN,7 +A1€NT (4)

-

where

AIE|:0i| 6)
Ay

Solving for the total strain in Eq. (4), one gets

ey =AT'Ke+A'ATEy, + A A ey (8)
or
ey =Ae+AlEy, +Aleyr C))
where
A,=A"'K (10)
Al =441 (11)

The subcell stresses can now be computed as

o7 = C(ﬁy)[AEﬁy)é +A§(M)5Nn +A£(ﬁy)€NT _ é;ﬁw _ E(Tﬁy)]
(12)

where C?) is the stiffness matrix corresponding to the material in
subcell (B8y), and AY” and A" are submatrices of A, and A’
corresponding to subcell (By).

Applying now the definition of average stress to Eq. (12), one
obtains

o = ﬁ Xﬁ: Zhﬁhyc(ﬁy)Aiﬁwé
v
+ ﬁ Z Z (hyh,CPPAIPNE,, — 2P0)
By

! %)
+or D0 (nsh, €A e — PP) (13)
By
On the other hand, the effective average stress can be written as
6=CE—¢&,—zr) (14)

If the effective stiffness matrix is defined as
- 1
— —_ (By) A (BY)
C==2 DD hah, € AP (15)
B Y
Equation (13) can be written as

o= 6|:é +Cc! ﬁ Xﬁ: Z (hﬁhyC<ﬁV>A§<‘3V>éNn _ é;ﬁy))
Y

1
O DD (ngh, €PAL ey, _E(fy)):| (16)
By

whichon comparison with Eq. (14) suggeststhe followingdefinition
for the effective viscous and thermal strains:

z | N
g, = _C—lE Z Z (hﬁhyC<ﬁV>A§<‘3V>an — E;ﬁy)) 17)
By

: o1 B7)
&r=—-C IE Xﬁ: Z (hﬁhyC<‘3V>A§<ﬁV>sNT — e ) (18)
14
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III. Viscoelastic Hereditary Model

The basic hereditary viscoelastic relationships for a uniaxial case
can be derived directly by applying equilibrium and compatibility
to the three-element model shown in Fig. 1a. This model consists
of a spring and a Maxwell element in parallel. C; and C,, are the
elastic moduli of the springs, and 7 is the damping coefficient of the
dashpot in the Maxwell element. To obtain a multi-axial version of
the hereditary model for the nonisothermal case, it is advantageous
to use Gibbs free energy potential (see Ref. 10). The following
discussionfollowsclosely thatof Ref. 10. When amulti-axial system
analogous to that shown in Fig. 1a is referred to, Gibbs free energy
potential takes the form

®=—10/C'o,~%0,C, 0, —t0)e, —at(o) T —Tp)
(19)

where C; is the elastic stiffness matrix of a homogeneous isotropic
material with modulus of elasticity E; and Poisson’s ratio v,
C,, is the elastic stiffness matrix of a homogeneous isotropic
material with modulus of elasticity E,, and Poisson’s ratio v,
o, ={0],,05,, 03,055,013, crfz}T are the stresses in the isolated
spring element, o, = {0]}, o, 043, o, 0%, opa}7 are the stresses
inthe Maxwellelement,e, = {¢],, £3,, €1;, 2¢3;, 2¢7,, 2¢],}T arethe
strains in the viscous damper, « is the coefficient of thermal ex-
pansion of the material, and 7y and T are the initial and current
temperatures, respectively.

The strain rates corresponding to the spring and the Maxwell
element can be obtained as

. d 0P
& =—\—7— (20)
dt 00,
d 0P
ém ==\ (21)
dt 00,
that is,
e | s rar 2 on|i @
&y = s Oy 9T Oy « 9T 0

. . aC;! o .
en=C, 0, + a_TO'm +a+ B_T(T —Ty)|T +¢, (23)

wherea ={a, a, @, 0, 0, 0}7 . Equations (22) and (23) can be written
as

& =C;'0,+6,T (24)
€n=C,'0,+0,T +¢, (25)
where
a —1
as = a_,}o.s + Qip (26)
oC!
am = a_;jo-m + Qi (27)
with
o .
i, = a+ a_T(T - T)T (28)

In analogy with the model of Fig. 1a, the stress rates satisfy
oc=o0,+o0; (29)
Also, using the constitutive relationships, we obtain
&, = Cy(&, — 6,T) (30)
Gn=Cp(én — &,y —0,7T) (31)

On the other hand, from compatibility,

€= és = ém (32)

When Egs. (29-32) are used, o can be written as
o =Cilé — (E,/E)é, — [(E,/E)O, + (E,/E)D,]T}  (33)
where
C:=C,+C, (34)
It is also assumed in Eq. (33) that

Cs = ESN7 Cm = EmN» CE =EN (35)
where E=E;+ E,, and N is a matrix that contains a common
Poisson’s ratio v, 1s, and 0s. Assumption (35) relies on that the
same value of Poisson’s ratio can be be assumed for all multi-axial
elements (springs and dashpots) in the viscoelastic model. It has
been shown in Ref. 10 that this assumption produces responses
that compare well with experimental results. Equation (33) can be
written as

o =Cp(é—&,—ér) (36)
where
&, = (E,/E)E, (37)
ér=arl (38)
with
& = (1/E)(E,0, + E,.0,) (39)

As pointed outin Sec. I, Eq. (36) allows the incorporationof the
present viscoelastic model into the framework of a micromechani-
cal method (such as GMC) much in the same way as inelastic, for
example, plastic or viscoplastic, behavior is incorporated (for ex-
ample, see Ref. 2). It is also possible to derive a similar expression
for a multi-element model with an arbitrary number of Maxwell
elements in parallel (Fig. 1b and the Appendix). Note, however,
that these models ignore the nonlinear dependencies of Poisson’s
ratios pointed out in Refs. 11 and 12. Because the purpose of the
present study is to demonstrate the applicability of the viscoelas-
tic theory of Ref. 10 in conjunction with the GMC, the numerical
results presented are limited to the three-element model shown in
Fig. 1a.

When the present three-element model is used, a given homo-
geneous viscoelastic material will be characterized by a set of four
material constants, E,,, E,n,and v, atdiscrete temperature values.'°
Itis useful then to find explicitexpressionsfor the partial derivatives
appearingin Egs. (26) and (27) in terms of these material constants.
This is done in the next paragraphs.

For a homogeneousisotropic material, C; ! correspondsto a com-
pliance matrix given by

C'=E'L (40)
where
1 —v - 0 0 0 |
—-v 1 —v 0 0 0
—-v —v 1 0 0 0
L= (41)
0 0 0 2+2v 0 0
0 0 0 0 2+2v 0
B 0 0 0 0 0 2+ 21)_
The partial derivative in Eq. (26) is then
aCc! oE ov
—— = —E*?—L+E'—L 42
aT o et E gl “2)
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where
[0 -1 -1 0 0 0]
-1 0 -1 0 0 O
-1 -1 0 0 0 O
L, = (43)
0 0O 0 2 00
0 0 0 0 2 0
| 0 0 0 0 0 2]
The parameter 6, in Eq. (26) can now be expressed as
0E; Y
0, = <_E;28—T‘L + E; ‘a—TLU> o, + aui (44)

The analogous expression for 8,, [Eq. (27)] is then

JdE av
=(-E*—= E-'— )
0”1 ( m.o 9T L+ m BTLU> O + Qjip (45)

To use Eqs. (44) and (45) in practice, it is necessary to express
o, and o, in terms of the stress and strain rates o and € and the
thermal strain rate €7. This can be accomplished as follows.

The stresses in the viscous damper satisfy

on =C,e, (46)

On the other hand, the modified viscous strain rates can be obtained
from Eq. (36) as

&, =—C;'6+¢—ér (47)
When Egs. (29) and (37) are used, o, and o, can be expressed as
on = (E/En)C,E, (48)
o, =0—0, (49)

For consistency, it is also assumed that [see Eq. (35)]
C,=nN (50)

IV. Integration of the Constitutive Relationships

The constitutiverelationship(36) canbe interpretedas an ordinary
differential equation that can be integrated to obtain either o or €.
The procedure will be illustrated for the case of integration to obtain
o. This of course corresponds to a strain-driven problem in which
the strain rate € and the rate of change of the temperature 7' are
assumed known. The simplest way to integrate Eq. (36) is to use a
forward Euler scheme. In this case, once the stress is known at time
t, the corresponding stress at time ¢ 4+ At can be found as

ot + A1)~ a(t)+Cp(é — &, — ép)At (51)

A slightly more accurate way of integrating Eq. (36) numerically
consists of finding an analytical solution first and then carrying out
the numerical approximation. To this end, one uses Egs. (48) and
(37) to rewrite Eq. (36) as

6 =Cpé—C,C,'o, — CpaT (52)
When use is made of relations (29) and (37), one can write
6 =Cgé — (E,/n)(c —0,) — Cp&T (53)
which can be reordered to yield
& + (En/mo = Cpé+ (En/mo, —CeaT  (54)

whose solution is

Eiﬂ
o(t) = exp(——t)
n
! Em - Em A rr
X exp{ —t )| Cre+ —0o, — CzaTl ) dr (55)
0 n n

After some algebraic manipulations,an approximate incremental
version of Eq. (55) is found as

o(t + Ar) % exp[—(E, /m) At]o(r) + exp[—(E,, /n) (At /2)]

X [Cp (& — &T) + (E,. /n)a ] 4 aijp At (56)

where use has been made of the mean value theorem to estimate the
second term.
For the isothermal case, Eq. (55) becomes

o + (Em/r’)o = CEE + (Em/U)CsE (57)

Equation (57) can be solved for o and ¢ to obtain

Eiﬂ
o(t) = exp(——t)
n
! Eiﬂ . Eiﬂ
X exp{ —7 )| Cre + —C;e ) dr (58)
0 n n
o ( E,E, t)
e(t) = exp| ——
p En
/1 (EHIES )(C_l - + Eiﬂ C_l )d (59)
X expl —= oc+—C, o |dr
; p En E " E

respectively. From Egs. (58) and (59), well-known relaxation and
creep solutions for the present model can be readily obtained as'?

G(t) = Cs + Cm CXP[—(Em/U)f] (60)
J(t) = CEI CXP[_(EmEs/UE)t] + Cy_l{l - eXP[_(EmEs/UE)t]}
(61)

V. Incremental Solution Procedure

The objective of the present analysisis to find the viscoelasticre-
sponse (represented,forexample, by the effectivecreep compliance)
of the composite question. The numerical integration procedure is,
therefore, carried out within the context of the GMC equations. In
the common case of elastic fibers embeddedin a viscoelastic matrix,
the equations of Sec. IV apply to the viscoelastic phase only. The
elastic phase is handled in the standard manner by means of the
appropriateconstitutive equation [Eq. (2) with e* equal to zero]. As
mentionedin Sec. IV, the integrationof the constitutiveequations for
the viscoelastic phase can be accomplishedeither by using a simple
forward Euler scheme or the slightly more accurate stepping ap-
proach based on the analytical solution [Eq. (54)]. Both approaches
were tested numerically during the present study, but only the re-
sults obtained with the latter are presented. The numerical solution
procedure is arranged so that it is strain and temperature driven,
that is, the total effective strain rate € and the rate of change of the
temperature 7' are assumed known at each time step. For the creep
compliance results presented in Sec. VII, an arbitrary stress step
is first applied to the composite, and the corresponding strains are
then calculated using the undotted version of Eq. (47). The process
can then be applied as if the problem were strain driven. The details
of the procedure are best appreciated if arranged in the form of an
algorithm as shown in the following section. Only the steps corre-
sponding to the viscoelasticphase are indicated. The elastic phase is
treated in the standard manner. The index k indicates the time step.

The algorithm is as follows:

1) Obtain the matrices A, and Aﬁ [Egs. (10) and (11)], and com-
pute the effective stiffness matrix for the composite using Eq. (15).

2) Initialize all relevant variables, thatis,setk =0, =0, T =Ty,
ENk =Q, O Nk ?0, entk =0, i =0, éNnk =0, and gy =0.
Here, €, and T are assumed known.

3) Find the strain rates in the subcells as [Eq. (9)]

éNk = AXE;'}( + AgéNnk + AgéNTk
4) Find the individual strains in the subcells as

ENnk+1 = Eni T En AL
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5) For all subcells (8y) use the following steps:
a) Find o_usw, (By) [Egs. (30) and (31)], and oi‘:?l/z as

m k

BY) — By (BY) _ (ﬁy) By — 5B By)
Og = CY (Ek EsTk ) O 1k O — Oy

o) _Cgﬁy)( B _ Bn) 1>
Yk+- E k+- sTk+5

b) Find the viscous strain rate [Eq. (48)]:

é;iw (E(ﬁw/E(ﬁy))(C(ﬁy)) o,(fk”

c¢) Find a modified stress rate as [Eq. (56)]

» (By) B9 () _ B BY) [, B 5B
O+l = Cr k+j_€Tk+% +(E’” N ) sk+ %

d) Find the new stress as [Eq. (56)]
o) = exp{—[E" [0 ] At}

+ exp{—[E,f{’w/n“’W](At/z)}a;‘gﬁ At

¢) Calculate 0(‘3” and 0(‘3” using Eqs. (26) and (27).
f) Calculate a(ﬁ” from Eq (39) and the new thermal strain
rate as E(T‘Skyl =a¥"T,.

g) Calculate the new thermal strain:
(By) By)
Eres1 =€t ETk+ Y
h) Update the thermal strain in the isolated spring element:

B _ B B F
e = €&y 0T At

i) Calculate the new viscous strain [Eq. (47)]:

A(ﬁy) (C(Eﬁy))

el (ﬁy) + E(ﬁy) By)

O t1 k+1 €1k

6) Set ey =€Enkr1, Ok =
ENTE +1-

7) Find the effective viscous and thermal strains 5,7 and €7 by
means of Egs. (17) and (18) and integrate £, to get ;.

8) Find the effective stress o from Eq. (14).

9) If k < maximum number of load steps, then set t =t + At,
k=k+1, and go to step 3, otherwise stop.

The notationk + % has beenused to representquantitiesevaluated
at time ¢ + At /2 [Eq. (56)]. These quantities are approximated as
the average at time step k and k41 .

In case the plain forward Euler procedureis preferred, steps ¢ and
d should be replaced by the following steps:

BY) _ oBY) ((By) _
é(ﬁy)c) If}s?fl) the stress rate [Eqn. (18)]: o C;" (g
nk

ONk+1s ENnk —ENnk+1, and € ENTK=

d) Integrate the stress rate: 0'(‘3” = 0'(‘3” + U(‘sy)At

VI. Computational Aspects

One of the difficulties of using GMC for other than elastic prob-
lems is the size of the matrices involved in the calculations. There-
fore, it is important to store and factor the matrix A in Egs. (10)
and (11) sparsely. The matrices A, and A’ must usually be stored
as fully populated matrices [Egs. (10) and (11)]. For the problem
of finding the effective elastic properties of a composite, only A;
needs to be calculated. This matrix is a 6Ng N, X 6 matrix and can
usually be stored completely, while still permitting the solution of
problems with a large number of subcells® For inelastic problems,
however, storage of A! as a fully populated matrix is prohibitive.A!
isa6NgN, X 6Ny N, matrix, and to store it completely for a prob-
lem with 2500 subcells would require 1.8 GB of memory (using
double precision). To perform analyses that require high-resolution
subcell models, it is necessary to reduce the storage requirements
imposed by A’. This has been accomplished in Ref. 4 by means of
a reformulatlon of the GMC equations. This reduces considerably
the computational and storage requirements of the method. Alter-
natively, for some nonlinear problems, storage of A’ can be avoided

altogether. This has been done in Ref. 7 by means of a tangent stiff-
ness matrix formulation for plasticity problems . In this study, we
present yet a third approach. It also avoids complete storage of A’ .
This approach is described next.

Equation (9) is rewritten as

EN = Ayé +A_1(A1é'1v,7) +A_1 (AIENT) (62)

If instead of Eq. (57), Eq. (67) is used to calculate the strains in
the subcells, it is not necessary to generate and store A’. Instead,
A is factored once, and then, at each load step, A" (which is also
stored sparsely) is multiplied by the current value of the viscousand
thermal strains €y, and €y7. In this way, the entire processrequires
only one factorization of A at the beginning of the procedure and
two triangularsolves at each load step. The procedure allows for the
solution of problems with a large number of subcells. A problem
with 10,000 subcells and 60 time steps similar to the ones shown
subsequently takes about 12 h of CPU time on an SGI Indigo2
workstation.

VII. Numerical Results

The hereditary viscoelastic model utilized in the present study
has been found useful in modeling the behavior of a titanium
alloy (TIMETAL 21S) at a wide range of temperatures.!®!* The
corresponding numerical approach developed here is used to an-
alyze graphite/fepoxy unidirectional composites with various fiber
arrangements and fiber shapes. The three-element hereditary vis-
coelastic model can be calibrated to fit experimental results of real
viscoelastic polymeric materials. This has been done, for instance,
for the 934 epoxy resin of Ref. 8. This epoxy resin, however, ex-
hibitsrelativelylittle viscoelasticity. To better examine the influence
of fiber shape and fiber arrangement on the viscoelasticresponse of
composite materials, a hypothetical viscoelastic material (epoxy-h)
was used as the matrix material in the numerical experiments of the
present study. T300 graphite fibers with real properties’ were used
as reinforcement material.

Two sets of numerical experiments were performed. In the first
set, the influence of fiber arrangementand fiber shape on the isother-
mal response of composites was studied. Four different fiber ar-
rangements and three different fiber shapes were considered. These
are shown in Figs. 3 and 4. In the second set, the response of the
composite to thermal load at different heating rates was examined.

b)

Fig. 3 Microstructures with different fiber shapes, 10,000 subcells;
fiber volume fractions: a) 0.4 and b) 0.28.
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Table1 Mechanical properties of materials used
in numerical experiments

OROZCO AND PINDERA

260
250

T300 graphite ~ T300 graphite Epoxy-h Epoxy-h
Property®  fibers at 22°C  fibers at 121°C at 22°C at 121°C
E4, MPa 202,820 214,330 S S
Er, MPa 25,300 14,820 S S
G A, MPa 44,112 68,180 S S
v 0.443 0.450 0.300 0.306
ay, °C! 1.33x 107 —133x107%  3.0x10™% 3.0x107*
ar, °C™! 7.04 x 107 7.04 x 1076 3.0x 107 3.0x10™*
E;, MPa S S 4,000 2,735
E;, MPa — S 3,000 4,895
7, MPa-s S S 25x 10 2.27x10°

2Subscript A indicates axial and subscript T indicates transverse.

240
230
220

J(t) (106 MPa )1

210
200
190
180
170
160
150
140

1301
120+
110+

100

®——o CREEP COMPLIANCE - Epoxy-h —

] | ] ] | ] ] | ] ] ]
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Time (s)
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T

puE A

inn" Sum B
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yaun Bu ="y
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H
T
H
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b) d)

Fig. 4 Fiber volume fraction 0.4, 2500 subcells (2150 for the hexag-
onal packing): a) square-edge packing of circular fibers, b) randomly
distributed fiber material, ¢) hexagonal (triangular) packing of circular
fibers, and d) square-diagonal packing of circular fibers.

The properties of the materials used are listed in Table 1. The creep
compliance function [Eq. (61)] corresponding to the hypothetical
epoxy is shown in Fig. 5. The parameters of the three-element stan-
dard solid model used to produce Fig. 5 are also listed in Table 1.

A. Influence of Fiber Shape and Fiber Arrangement:
Isothermal Case

Figure 6 shows the responses (transverse creep compliances)
corresponding to the microstructures shown in Fig. 3. These mi-
crostructuresdiffer only in fiber shape. To capture the effect of fiber
shape better, high-resolutionmodels (10,000 subcells) were used to
generate these responses. Note that there is a small but noticeable
difference in the responses of the elliptic and circular fibers when
the loading direction s the x, direction (about 3.7% at the end of the
loading cycle). When the directionof loading is the x3 direction, the
elliptical fiber response is 16% lower than that of the circular fiber.
The reason for this is that the elliptical fiber has its larger semi-axis
directed in the x;3 direction. Very little difference in the response is
exhibited by the circular and square fiber microstructures. This is in
contrast to what has been observedin Refs. 7, 15, and 16 for plastic
behavior. The reason is that fiber shape and fiber arrangement have
a significant effect on the magnitude of the hydrostatic component
of the stress. In plasticity models, this hydrostaticcomponent plays
an important role because it inhibits the progression of the plas-

Fig.5 Creep compliance of hypothetical epoxy (epoxy-h); thermome-
chanical properties shown in Table 1.
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Fig. 6 Transverse creep compliances (€2/022) corresponding to com-
posite microstructures with different fiber shapes (Fig. 3).

tic zone in the matrix. In contrast, the present viscoelastic model
makes no attempt to distinguish between viscoelastic effects due to
hydrostatic and deviatoric components of the stress.

The creep compliance functions corresponding to the different
microstructure architectures of Fig. 4 are shown in Fig. 7. The first
observationis thatall microstructuresare more compliantin longitu-
dinal shear than in transverse tension. The responses corresponding
to the hexagonaland randommicrostructuresalmostcoincidefor the
longitudinal shear compliance and are very close to each other for
the transverse compliance. This is because a hexagonal microstruc-
ture exhibits an almost perfect transversely isotropic behavior just
as a random microstructure does.® The responses corresponding to
the square-edgeand the single circular fiber should theoretically co-
incide because they are indeed the same microstructure. The small
differences seen in Fig. 7 for these two cases are due to the mod-
eling of the microstructures. (Because arrays of 50 x 50 subcells
were used, the circular fiber shape is more accurately modeled for
the single fiber than for the square-edgearray.) There are significant
differencesbetween the responsescorrespondingto the square-edge,
the hexagonal and random, and the square-diagonal architectures.
The differences in response for the circular fiber and the random
microstructure are of the order of 14% at the end of the loading
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Table 2 Initial mechanical properties corresponding to microstructures shown in Figs. 3 and 4

Property, MPa

Microstructure Eq Ey V23 V13 Vi Go3 Gi3 G

Elliptical, vy =0.28 61,398 9,733 10,933 0.357 0.362 0.331 3,333 5,860 3,715

Circular, vy =0.28 61,853 9,983 10,016 0.387 0.344 0.344 3,340 4,102 4,061

Circular, vy =0.40 85,359 11,462 11,602 0.381 0.364 0.362 3,725 5,280 5,068

Square edge, vy =0.40 82,226 11,201 11,446 0.380 0.363 0.358 3,668 5,198 4,836

Hexagonal, vy =0.40 85,707 10,737 11,214 0.394 0.366 0.355 3,731 4,975 4,397

Random, vy =0.40 85,330 10,584 0.412 0.358 0.357 3,725 4,372 4,351

Square diagonal, vy =0.40 75,562 10,207 10,289 0.406 0.353 0.351 3,571 4,206 4,117
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Fig.7 Creep compliances corresponding to composite microstructures
with different architectures (Fig. 4).

cycle for the transverseloading and of the order of 18% for longitu-
dinal shear. The square-diagonal microstructure turns out to be the
most compliant for both longitudinal shear and transverse normal
loading. The square-diagonal microstructureis 19% more compli-
ant (at the end of the loading cycle) than the single circular fiber
for the transverse loading and 24% more compliant than the sin-
gle circular fiber for longitudinal shear. This can be explained by
that the square-diagonal microstructure is actually the square-edge
microstructure rotated 45 deg. Note that part of the differences in
response found in all of these cases can be explained by the differ-

Temperature (deg. C)

Fig. 8 Viscoelastic response of graphite-epoxy composite for thermal
load at different heating rates; square-edge packing of T300 graphite
circular fibers (Fig. 4), vy = 0.4.

encesin (initial) effective properties of the different microstructures
(Table 2). A portion of the difference in responses, however, is due
to viscoelastic effects. The influence of the fiber geometry on the
creep times of the different composite microstructuresis also indi-
cated by the differences in the initial slopes of the creep compliance
responses shown in Figs. 6 and 7.

B. Nonisothermal Case

The response of the composite to thermal load was examined for
a series of different heating rates and for temperature-dependert
properties. The properties are presented in Table 1. The properties
for the T300 graphite fibers are actual experimental values taken
from Refs. 3 and 8. The properties for the epoxy-h are hypotheti-
cal but chosen so that its behavior with temperature is analogous to
that of the epoxy resin reported in Ref. 8. Six rates were utilized,
namely, 7 = 0.005, 0.01, 0.02, 0.04, 0.08, and 0.16°C s~!. Results
were obtained for the strain in the x; and x, directions. Very few
viscoelastic effects were found for the strain in the x, direction.
Therefore, only the results for the longitudinal strain are presented.
Circular fibers corresponding to square-edge and hexagonal pack-
ing (Fig. 4) were utilized. Very little difference in the response was
found for different packing arrangements and/or fiber shapes. As a
consequence, results are presented only for the square-edge pack-
ing. These are shown in Fig. 8. Results show a difference of 160%
in the final strains between the slower (T = 0.005°C s~1) and the
faster (T =0.16°C s~!) rate. This difference is of course a func-
tion of the viscoelastic properties of the matrix, as well as the mis-
match in the coefficients of thermal expansion between fiber and
matrix.

C. Numerical Accuracy of the Results
Allresults presentedin the presentstudy were obtainedusing dou-
ble precisionon an SGI Indigo2 workstation. Thereis very little error
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in the numerical integration procedure utilized. When, for instance,
Fig. 5 is referred to, the asymptotic value of the creep compliance
is about 250~ MPa~!, which is exactly the inverse of 4000 MPa,
the E value given in row five, column two of Table 2 for epoxy-h.

VIII. Summary

A computationallyefficient viscoelastic formulationof GMC has
been presented and used to study the behavior of complex mi-
crostructureunidirectionalcomposites with viscoelasticmatrices. A
multi-axial hereditary viscoelastic model developed in Ref. 10 was
used as the theoreticalframework of the formulation. The viscoelas-
tic creep responses of composites with different fiber shapes and
fiber arrangements were analyzed and compared. High-resolution
cell models (with up to 10,000 subcells) of the composites were
used for the fiber-shape comparison cases. It was found that dif-
ferences in viscoelastic response due to differences in fiber shape
are not significant (about 3.7% for the case of elliptical vs circular
fibers). However, significant differences are found for composites
with different fiber arrangements. These differences can be on the
order of 24%. Experimental research is necessary to verify some of
the results of the present study. On the other hand, the results seem
to confirm what has been observed in similar numerical studies for
plastic and viscoplastic behavior of composites. It is believed that
the numerical capability developedis an efficient tool to predict the
viscoelastic behavior of complex microstructure multiphase com-
posites. Furthermore, the capability can be used within structural
analysis codes as a constitutive model subroutine, just as has been
done with the commercial code Hipersizer.

Appendix: Derivation of the Constitutive Equation
for a Parallel Multi-Element Maxwell Model

For the ith Maxwell elementin Fig. 1b, we have
o; =C[(é—ém—ézr) (A1)
where ¢ is the total strain rate, €;,, is the strain rate in the dashpot,
€;r is the thermal strain rate, C; the material stiffness matrix, and

o; is the stress rate. Because the Maxwell elements in Fig. 1b are
connected in parallel, the total stress rate is

&= Ci(e—éy—&r) (A2)
which can be written
G =Cle—C" ) (Ciéw) —C' Y (Ciéir) (A3)

where

c=) () (A4)

Equation (A3) can be written as

6=CE—¢&, —ér) (A5)
provided that

én =C’' Z(Czém) (A6)

er=C") (Cén) (A7)

Equation (A5) is formally the same as Eq. (36), which is the basis
for the implementation of a viscoelastic model into GMC. On the
other hand, at least in theory, it is possible to model real viscoelas-
tic materials to any desired degree of accuracy using multi-element
Maxwell models in parallel.’® Therefore, it is possible to apply the
methodologydevelopedin the present paper to the analysis of com-
posites with realistic viscoelastic matrix materials.
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